A Compactness Criterion for Real Plane Algebraic Curves

نویسنده

  • John Stalker
چکیده

Two sets of conditions are presented for the compactness of a real plane algebraic curve, one sufficient and one necessary, in terms of the Newton polygon of the defining polynomial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sums of Squares on Real Algebraic Curves

Given an affine algebraic variety V over R with compact set V (R) of real points, and a non-negative polynomial function f ∈ R[V ] with finitely many real zeros, we establish a local-global criterion for f to be a sum of squares in R[V ]. We then specialize to the case where V is a curve. The notion of virtual compactness is introduced, and it is shown that in the localglobal principle, compact...

متن کامل

Symmetric Plane Curves of Degree 7 : Pseudoholomorphic and Algebraic Classifications

This paper is motivated by the real symplectic isotopy problem : does there exist a nonsingular real pseudoholomorphic curve not isotopic in the projective plane to any real algebraic curve of the same degree? Here, we focus our study on symmetric real curves on the projective plane. We give a classification of real schemes (resp. complex schemes) realizable by symmetric real curves of degree 7...

متن کامل

Pseudo-holomorphic and Algebraic Classifications

Almost all known restrictions on the topology of nonsingular real algebraic curves in the projective plane are also valid for a wider class of objects: real pseudo-holomorphic curves. It is still unknown if there exists a nonsingular real pseudo-holomorphic curve not isotopic in the projective plane to a real algebraic curve of the same degree. In this article, we focus our study on symmetric r...

متن کامل

Coamoebas of Complex Algebraic Plane Curves and the Logarithmic Gauss Map

The coamoeba of any complex algebraic plane curve V is its image in the real torus under the argument map. The area counted with multiplicity of the coamoeba of any algebraic curve in (C∗)2 is bounded in terms of the degree of the curve. We show in this Note that up to multiplication by a constant in (C∗)2, the complex algebraic plane curves whose coamoebas are of maximal area (counted with mul...

متن کامل

Real Plane Algebraic Curves

We study real algebraic plane curves, at an elementary level, using as little algebra as possible. Both cases, affine and projective, are addressed. A real curve is infinite, finite or empty according to the fact that a minimal polynomial for the curve is indefinite, semi–definite nondefinite or definite. We present a discussion about isolated points. By means of the operator, these points can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008